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The nonlinear evolution of the
inviscid secondary instability of
streamwise vortex structures

By NicHOLAS D. BLACKABY AND PHILIP HALL

Department of Mathematics, University of Manchester,
Manchester M13 9PL, UK
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The weakly nonlinear evolution of an inviscid marginally unstable wave growing
on a boundary layer supporting a streamwise vortex structure is investigated. The
nonlinear growth of the wave is found to be controlled by the diffusion layer located
at the edge of the critical layer associated with the wave. The evolution equation
is found to depend on the upstream history of the wave and the solution of the
equation suggests that the wave either restructures the mean state so as to make
it stable or develops a singularity at a finite distance downstream of the point of
neutral stability.
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Streamwise vortices are known to be an important ingredient of the transition process
in boundary-layer flows over both curved and flat walls. In the case of flat walls, the
streamwise vortices are an initially passive product of wave interactions (see, for
example, Hall & Smith 1991), while for curved walls the vortex can be the primary
instability of the undisturbed flow. In recent years there has been much interest
in the breakdown process of such vortices. In the context of Gortler vortices, the
experiments of Swearingen & Blackwelder (1987) show that the initially steady vortex
structure caused by wall curvature undergoes a secondary bifurcation to an unsteady
three-dimensional flow. This secondary instability can be of either the sinuous or
varicose type. In flat plate boundary layers the secondary instability is invariably
found to be of the varicose type.

The first attempt to understand the breakdown process for Gortler vortices was
given by Hall & Seddougui (1989). In that calculation, the small-wavelength Gortler
vortex flow, investigated by Hall & Lakin (1988), was localized in the shear layers,
trapping the region of vortex activity. Analytical progress for this case is made pos-
sible by the assumption of small-vortex wavelength and Hall & Seddougui (1989)
showed that wavy (i.e. sinuous) modes of instability are possible and are localized
near the top and bottom of the vortices. No mode of the varicose type was found to
be unstable. If such a mode exists at small-vortex wavelengths then it is presumably
not trapped in the region where the vortex activity decays to zero.

In order to understand the origin of this secondary instability mechanism, Hall &
Horseman (1991) investigated the inviscid linear instability of a Gértler vortex. The
instability analysis for such a flow is greatly simplified by the fact that the streamwise
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484 N. D. Blackaby and P. Hall

velocity component of the flow in the presence of a Gortler vortex remains an order
of magnitude larger than the normal and spanwise velocity components. This means
that an inviscid disturbance to the vortex flow satisfies a two-dimensional form of
the Rayleigh equation, dependent only on the streamwise velocity component of the
vortex. Note here that the length and time scales of the inviscid mode are relatively
short so that non-parallel effects are formally negligible in the leading-order inviscid
instability analysis. The modified two-dimensional Rayleigh equation found by Hall &
Horseman (1991) was simultaneously found in the context of vortex wave interaction
theory by Hall & Smith (1991). The numerical solution of the eigenvalue problem
associated with the modified Rayleigh equation was discussed by Hall & Horseman
(1991), who found that both sinuous and varicose modes become unstable as the
vortex develops in the streamwise direction. The question of which mode is the
most unstable is a function of the history of the vortex, its wavelength and the
Gortler number. However, Hall & Horseman (1991) were able to obtain quantitative
agreement with the experimental measurements of Swearingen & Blackwelder (1987).
Subsequently, the instability problem was examined again by Li & Malik (1995)
who found that Hall & Horseman (1991) had missed the most unstable varicose
mode. Note that this latter mode is in fact the second most unstable overall and
that otherwise the results of Li & Malik (1995) are consistent with those of Hall &
Horseman (1991).

Related investigations of the problem discussed above have been given by Liu &
Domardzki (1993) and Yu & Liu (1994). In the former paper, a direct Navier—Stokes
simulation of transition in the Gértler problem was carried out for parallel flows, and
the results obtained are in broad agreement with those of Hall & Horseman (1991).
Yu & Liu (1994) reconsidered the instability problem of Hall & Horseman (1991) but
retained some viscous terms in their approximation. Yu & Liu (1994) are critical of
Hall & Horseman (1991) because of their neglect of viscosity. However, this criticism
is perhaps surprising since viscous effects are certainly a second-order effect and in
any case the equations solved by Yu & Liu (1994) retain only some of the second-
order effects. In effect, the criticism of Yu & Liu (1994) is equivalent to arguing that
the Orr—-Sommerfeld equation, rather than the Rayleigh equation, should be used to
describe inviscid instabilities of parallel flows.

In this paper we shall describe the evolution of the inviscid mode found by Hall
& Horseman (1991). This will be done using viscous-critical-layer and diffusion-layer
theories in the context of a weakly nonlinear instability theory. In particular, we shall
consider the evolution of a mode near the critical streamwise location, where the vor-
tex structure has developed sufficiently to (first) render the now three-dimensional
boundary-layer flow unstable to inviscid modes (note that, for example, incompress-
ible two-dimensional Blasius boundary-layer flow does not support inviscid instabil-
ity). At such a location, the flow is marginally unstable and we can consider the
evolution of the most dangerous (important) mode. Related work has been carried
out by Wu (1993) and Smith et al. (1993).

Although the analysis we give is for vortex flows generated by wall curvature,
it is valid for any flow where one of the velocity components depends on two spa-
tial variables and is larger than the other two components. For such more general
flows the periodicity in the spanwise direction which we assume in this paper must
be replaced by an appropriate condition in order to derive the required solvability
condition. The procedure adopted in the rest of this paper is as follows. In §2 we
formulate the problem to be considered. In §3 we determine the outer solution of

Phil. Trans. R. Soc. Lond. A (1995)
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the perturbation equations and the required form of the solvability condition, while
the critical layer is discussed in §4. At the edge of the critical layer, a diffusion layer
is required in order to account for the mean-flow correction; this layer is discussed
in §5 and the evolution equation is derived; the solution of the evolution equation
and some conclusions are given in §6.

2. Formulation

We consider the flow of a viscous fluid of kinematic viscosity v over a wall of
variable curvature. If Uj is a typical value of the fluid speed at infinity and [ is
a typical length scale in the flow direction, then, by defining a Reynolds number
Re = Uyl /v, the non-dimensionalised Navier-Stokes equations for an incompressible
flow may be written in the form

Uy + vy +w, =0,

Up + Uy + VUy + WU, = —py + Re M (ugy + Uyy + Usz), (2.1)
Uy + Uy + vy + W, = —py + Re"l(vm + vy + V22), '
Wy + uw, + vwy + ww, = —p, + Re ' (wee + Wyy + Wy ).

We define new variables Y, Z by writing
y=Re V?Y, z=Re'?Z, (2.2)
and assume a large-Reynolds-number (Re >> 1) three-dimensional boundary-layer
flow (i.e. Blasius flow plus streamwise vortex) of the form
(u,v,w,p) = (@(z,Y, Z), Re"/*8(2,Y, Z), Re"*w(x,Y, Z), po + Re ™" (2, Y, Z)).

This flow can be generated by several mechanisms but the most obvious one is wall
curvature. In that case, z,y in (2.1) measure distance along and normal to the wall,
and curvature terms must be inserted into those equations. We then find that the
flow is determined by
Uy + 0y +wz =0,
Uy + Ul + VUy + WUy = Uyy + Uzz,
Ty + UT, + Wy + Wiz + GU* = —py + Uyy + Uzz,
Wy + UW, + Wy + WWz = —pz + Wyy + Wzz,

(2.3)

which must be solved in conjunction with suitable boundary conditions such as ‘no-
slip” at the wall (solid boundary) and with the solution tending towards a uniform
flow at infinity (far from the solid boundary). The parameter G appearing in (2.3) is
the Gortler number. The extra curvature terms to be inserted in (2.1) play no role in
the nonlinear inviscid instability problem to be investigated here, so for convenience
we choose not to insert them. Note also that, from Hall & Bennett (1986), the
Gortler equations are perhaps more conveniently derived by starting with (2.1) and
then making an appropriate Prandtl transformation. Again, if this route is followed,
the extra terms to be inserted into (2.1) play no role in the following analysis. Thus,
in the present investigation, it is sufficient for us to use (2.1) to describe the nonlinear
state perturbed around the incoming vortex flow given above. Whether the vortex
field is generated by curvature, turbulence screens upstream or a localized bump at
the wall is irrelevant in the following discussion.

Phil. Trans. R. Soc. Lond. A (1995)
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486 N. D. Blackaby and P. Hall

In general, the solution of (2.3) is a numerical task (see Hall 1988) and it turns
out that nonlinear effects stabilize the growth of Gortler vortices; however, when a
large spanwise wavenumber assumption is made, Hall & Lakin (1988) demonstrated
that much analytical progress can be made towards the solution of these equations.

Let us first recap the linear inviscid stability problem for this three-dimensional
boundary-layer flow. In the neighbourhood of a point zg, the flow is perturbed by a
small inviscid disturbance proportional to

E = expli(aX — 27T)], (2.4a)

where
¢=axo+Re V?X, t=Re T, (2.4b)

and «a, 2 are the (streamwise) wavenumber and frequency of the linear inviscid
secondary instability. The expansions for the velocities and pressure are

(u,v,w,p) = (@, Re™""* 5, Re "/, pos + Re ™" p(x,, 7)) + e((u, 0, w,p)E + c.c.),
(2.5)
where € < 1, ‘c.c.” represents complex conjugate, barred quantities correspond to
the three-dimensional boundary-layer flow and the disturbance quantities @, ¢, w, p
are, in particular, functions of z, ¥ and Z (but not X or 7).
After a little algebra we find that the pressure perturbation p satisfies the modified
Rayleigh pressure equation

6 ﬁY 0 ﬁZ 062]5 B ‘
Y [(ﬂ - C)ZJ - 0z l:(ﬂ — c)2J (i — c)? =0, (2.6a)
with boundary conditions
Ppy(y=0)=0, pHY — o00) =0, (2.60)

where ¢ = 2/c. In this paper we shall restrict our attention to solutions of this
equation with p periodic in Z with the same Z-period as the underlying flow @; in
fact, without loss of generality, we choose this Z-period to be 27. This equation was
derived by Hall & Smith (1991), who were concerned with vortex-wave interactions,
and by Hall & Horseman (1991) in the context of secondary instabilities of Gortler
vortices. The eigenvalue problem for ¢ = ¢(u, z, @) (temporal stability problem), asso-
ciated with the partial differential system for p, was first solved by Hall & Horseman
(1991). Here we shall consider the more appropriate spatial instability problem in
the presence of nonlinear effects.

Note that c is not a function of Z; if we consider neutral disturbances (those
having ¢ entirely real), equation (2.6a) is singular at Y = Yo = f(z, Z), (say) where
% = c. Thus, for three-dimensional boundary layers, the critical layer is ‘wavy’ in
the sense that the location of the critical level (where the equation is singular) is a
function of spanwise location Z. Note further that the neutral value of ¢, and hence
Yo = f(x,Z), are not known in advance of a numerical solution of the eigenvalue
problem (2.6).

In figures 1 and 2 we present some results from Hall & Horseman (1991) for
their numerical solution of (2.6) in the context of secondary instabilities of Gortler
vortices; the reader is referred to their paper for more details of the underlying three-
dimensional flow used in the calculations. In figure 1 we show some results for the
most dangerous odd mode of instability for a Gortler vortex flow. The shape of the
curve is similar to that which would be obtained for an inflectional unidirectional

Phil. Trans. R. Soc. Lond. A (1995)
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Figure 1. The growth rates of the two most dangerous odd modes at a position x = 100 cm from
the leading edge; the lowest curve corresponds to the only unstable mode found at z = 80 cm
(reproduced from Hall & Horseman (1991)).

velocity field by solving the standard Rayleigh equation. In figure 2 we show the
normal and streamwise perturbation velocity components for an unstable mode. Note
that the mode is concentrated towards the edge of the boundary layer. Since the mode
is not neutral, it does not exhibit a critical-layer behaviour.

In fact, it is a difficult numerical procedure to solve (2.6a) in the neutral case (as the
equation is singular at the critical level) and results are not yet available. However,
it is clear from the results of Hall & Horseman (1991) that neutral modes of the
eigenvalue problem (2.6) do exist (see, for example, their figure 3(a)—reproduced
here as figure 1). That such neutral modes will be regular cannot be deduced so
easily from their results; in the next section we argue that such neutral modes must
be regular. The analysis presented in this paper is for the case of marginally unstable
flows, i.e. we are assuming that the flow is stable until a certain downstream location,
where the three-dimensional underlying flow has developed such that it first supports
unstable linear inviscid modes governed by (2.6). This criterion is obviously met
for the developing incompressible three-dimensional boundary-layer flow considered
by Hall & Horseman (1991). Their results show that the ever-increasingly Gortler-
vortex-dominated flow becomes more unstable in the downstream direction; however,
upstream the Gortler vortices have not developed sufficiently and the flow is two
dimensional (Blasius) at leading order and hence completely stable to such inviscid
perturbations. Thus, by the so-called ‘sandwich principle’, there exists a streamwise
location at which the flow first supports unstable linear inviscid modes governed by
(2.6). Now let us consider the nonlinear problem and, as a starting point, we discuss
the outer region away from the critical layer.

Phil. Trans. R. Soc. Lond. A (1995)
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Figure 2. The contours of the streamwise and normal velocity components for the most dangerous
odd mode at a position z = 100 cm from the leading edge: (a) contours of constant |u|; (b)
contours of constant |v| (reproduced from Hall & Horseman (1991)).

3. The outer solution for weakly nonlinear inviscid modes

In order to derive the desired nonlinear evolution equation for the amplitude of an
inviscid disturbance mode, it is necessary to split the three-dimensional boundary-
layer Hlow into distinct regions (layers), each corresponding to different dominant
physical effects locally governing the inviscid disturbance (see figure 3).

Let us first consider the flow solutions in regions Ia,b, away from the critical layer,
diffusion layer and solid boundaries (the wall), i.e. the bulk of the boundary layer.
Our aim is to derive the solvability condition associated with an inhomogeneous form
of (2.6). This solvability condition, together with expressions for certain ‘jumps’ in
flow velocities in crossing the critical layer, (to be derived in the later subsections) will
yield an evolution equation for the spatial evolution of the disturbance amplitude.

Before proceeding any further, let us consider the various streamwise length scales

Phil. Trans. R. Soc. Lond. A (1995)
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principal flow direction
y —
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three-dimensional | [=oo-oo— ] P ——— ~
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\ _
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Figure 3. The various regions of the three-dimensional boundary-layer flow: Ia,b, outer flow;
ITa,b, diffusion layers of relative thickness O(Re_l/4 ,u_l/Z); II1, critical layer of relative thickness
O(Re™'/%); 1V, outer wall layer of relative thickness O(Re™/%); V, inner wall layer of relative
thickness O(Re~1/%). Note that: (i) these thicknesses are given relative to the boundary-layer

thickness O(Re~'/?); and (ii) the critical and diffusion layers are distinct from the wall being
centered around the level Y = f(z, Z).

which are present in the analysis. In fact, we use multiple scales in the streamwise
direction x:

=20+ Re V2 ' X +puz+Re V2 X, p<l (3.1a)

Here zy now denotes the neutral z-station (in fact, zo is a point of marginal
instability, as the flow first becomes unstable to linear inviscid disturbances here);
uZ is a small change in z-location from zg (assuming uZ > 0, then the flow is now
slightly unstable: hence the weakly nonlinear analysis to follow); Re™1/2 u_lX is
the wave-amplitude modulation scale; and Re™Y2 X is the scale on which the waves
oscillate. Note that we are considering the purely spatial stability problem and thus
there are no slow time effects. In order to elucidate the effect of the non-parallelism
of the underlying flow on the nonlinear evolution of the disturbance, we define the
parameter m:

p=m Re /4 (3.1b)

so that (3.1a) can now be rewritten as
x =z + u@+m 2X)+ Re V2 X, (3.1¢)

We see that when u reduces to O(Re™*/*), corresponding to m ~ O(1), the Z-scale

emerges at the same order as the wave-amplitude modulation scale and, hence, the
non-parallelism of the underlying flow will affect the evolution of the disturbance
(see Hall & Smith 1984).

We consider ‘fixed-frequency’ disturbances so that 2 is fixed; thus, the non-
neutrality is entirely due to the change in z-location uZ. Note that the developing
three-dimensional boundary-layer, and hence the neutral streamwise-wavenumber «,
are functions of z. In addition, it should be noted that, if we were considering a
three-dimensional shear layer rather than a three-dimensional boundary layer, we

Phil. Trans. R. Soc. Lond. A (1995)
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would not consider {2 fixed. The non-neutrality would then be entirely due to the §2
perturbation, i.e. a Strouhal number perturbation.

Since the normal and spanwise velocity components of the unperturbed flow
are relatively small, only the streamwise component @ of the three-dimensional
boundary-layer flow enters the problem to orders of concern; we write

=g+ pu(@+m2X)uy + -, (3.20)

where ﬂ()(Y, Z) :ﬂ(w(),Y, Z), 1_/,1(Y, Z) :ﬂx(l'o,Y, Z)
Further, we only need to consider two terms of the fundamental (proportional to
E*) and write

(G, 0,0, p) = (U, 01,01, P1) + - - - + (g, Do, Wo, Po) + -+ . (3.20)

(a) The leading fundamental term

The leading-order problem for (4, 01, w1, p1) is a partial differential system in Y, Z
and its solution may be written in the form

(g, 0y, 1, p1) = AX) (@, 9, 0" B E + c.c., (3.30)

where A is an amplitude function and 71(1), f)(l),ﬁ)(l) and ﬁ(l) satisfy
101 1 1

il + o) + @) =0, ia(@y — )il + gyl + a0t = —iapi”, } (3.3)

. (1 (1 . ~(1 (1
io(ug — c)v(1 ) — —p(n}, (g — c)w(1 ) = —p(IZ).

respectively) to determine the neutral solution at x = zy. We fix p; ) by the normal-
ization

These lead to the eigenvalue problem (2.6) (with ﬁgl) and g re(}ljlacing p and u,

PV = poo(Z2)e ™ as Y — oo, (3.3¢)
where po.(Z) is prescribed at some value of Z.
Followin% Hall & Smith (1991), let us now consider the behaviours of !, 9",
uA)gl) and 1311) near the critical layer at Y =Y, = f(Z). Defining s =Y — Y, (so that
0z — 0z — f70,), we write

ﬂ(} =c+ )\(CUQ,Z)S + )\2(.1'(), Z)62/2 + )\3(660, Z)S“s/()‘ + - s (3 4)
Uy = to(To, Z) + W1 (20, £)8 + ta(z0, Z)s* /24 - - -. '
The method of Frobenius gives ﬁgl) in the form
P = 1+ b1 (Z)n, (3.50)
where
¢1 = ¢10(Z)+¢11(Z>'5+¢12(Z)'82+¢13L(Z)'8311’13—}—0-534-...’ ¢2 = 53_’_....
(3.5b)

Note that ¢10(Z) and bj1 can be determined from the numerical solution of the
eigenvalue problem (2.6) (the & corresponding to above and below the critical level,
respectively); while, in particular,

Api = fzd10z, (3.6a)
Phil. Trans. R. Soc. Lond. A (1995)
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2AA%h12 = NAbrozz — (2Xz + Nz fz2)b102 — Mo (3.60)

6AAD 13, = AN fzb122 +2(BNaA —Afz Nz + 20 f22) P12 — 2Mb1122
+2(20z — Ao fz)driz + (20°X = 2f 200z + Nafz2) b1
—X\2d10zz + 2 220102 + @* Aad1o, (3.6¢)
where we have defined
A=1+f2. (3.7)
Here, following Hall & Smith (1991), we assume ¢3;, = 0, i.e. we assume that the
right-hand side of (3.6¢) is identically zero. If it were non-zero, at O(Re~'/%) a jump
in v across the sole critical layer would be induced and, as we are not looking at upper-
branch scalings, there would be no wall layer effects to counteract this jump; hence,
this jump and the coefficient of the logarithm term must be zero. Equations (3.6a)
and (3.6b) determine the coefficients ¢1; and @15 in terms of ¢19(2).
The velocities 11(11), 17(11) and ﬁ)gl) have the following properties near the critical
layer:

ﬂ(ll):dlZS_1+"', f)gl) E@(ll)—fzti)(ll):d2+’ ,Lb(ll):_iad1871+~--7
(3.8a)
where
dl = —¢10Z/a2/\A and d2 = (_2A¢12 + qubllZ)/iOé)\. (38[))

(b) The largest forced fundamental
Let us now consider the largest forced term of the fundamental (due to non-
neutrality effects), denoted by (ﬁ(Ql),ﬁ(Ql),ID(QI), }5(21)). It is found that

oy | o #y | o | R (390)
Y | (g — ¢)? 0Z | (g — ¢)? (g — )2 (g —c)?’ '
with boundary conditions
P (Y =0)=0, P (Y — o00) =0, (3.9b)
and
0A -
Ry=RVZZ 4+ RVZ + m2X)A, (3.9¢)
0X
where
RS = [__m_CI Py + 815, — a?p —Qiaﬁ(l)J, 3.9d
2 (i —«c)( 1wy T Pizz 1) 1 (3.9d)
U 2
RO _ |t ) s) ey i a sy (3
2 (@ —¢) (Pryy +Pizz —0™Pr’) (G — ) (taypry + Uizpiyz) (3.9¢)

Note that the equation for f)(Ql) is an inhomogeneous form of that for ]5(11); as

mentioned previously, we must determine a solvability condition for this equation
to ensure that it has a solution. This solvability condition will (indirectly) lead to
the desired evolution equation. To derive the solvability condition we will essentially
follow the conventional method of multiplying the inhomogeneous equation by the

Phil. Trans. R. Soc. Lond. A (1995)
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adjoint of the homogeneous equation and then integrate over the range 0 <Y < oo,
0 < Z < 27 (the latter corresponding to a complete period). Note that we are
assuming that the disturbance has the same period as the basic flow. The latter
assumption is justified by the fact that Hall & Horseman (1991) were unable to find
any subharmonic disturbances of the modified Rayleigh pressure equation. As in all
critical-layer problems, special care must be taken to deal with the singular nature of
the equations, i.e. the critical layers; however, extra care is necessary for the current
problem due to the ‘waviness’ (Z-dependence of Y. = f(Z)) of the critical layer.
The fact that additional care is required can be explained as follows: note that, in
(Y, Z)-coordinates, (i) for any fixed Z-value there is a unique critical-Y value, but
(ii), for a fixed Y-value there is either no critical Z-values or many.

Thus, we look for coordinates which describe the critical level more suitably; note
that the Prandtl transformation (s = Y — f(Z)) does ‘level’ out the critical layer but,

at the same time, leaves the solid boundary ‘wavy’, i.e. it is described by s = — f(Z).
Instead we introduce the normal variable
§=Y/f(2). (3.10)

This transformation ‘flattens’ out the critical level (it corresponds to £ = 1) and
also leaves the wall flat (¢ = 0). Note that this transformation involves f(Z) and
thus could not have been used from the outset, i.e. it involves information from the
solution of the homogeneous problem (2.6).

Note that
0/0Y — (1/f(Z))0/0&, D/0Z — /07 + g(Z)£D ] OE, (3.11)
where g = —f'/f. In these coordinates, the homogeneous equation takes the form
51 ~(1) 2.4(1)
10 Pig 0 0 (0/0Z + g0/ 0¢€)p; a’py’
7 o€ [(a NG (o CEEEE

PE=0)=0, p"(E=00)=0, (3.120)
while the adjoint, ¢ say, satisfies

19 [JL] N (i _ ( 9 ) 5) {(8/62 - g(a/aog)qJ o'
720¢ | (- o) 0z 9\ ¢ (@— )2 @—c2

(3.13a)

q(§=0)=0, g({=00)=0. (3.13b)

Therefore, in these transformed coordinates the pressure equation is not self-adjoint.

Thus, to derive the solvability condition for (3.9), we first transform to (£, Z)

variables, multiply both sides by the adjoint ¢ (defined above) and then integrate

both sides over the range 0 < £ < 00, 0 < Z < 27, excluding the critical layer. This

gives

27
1 S(1) (1) Loy
dZ | — g(apsy) — PV az) + = (b — pSq
/0 [(u—cﬁ( ( 27 2 fg( 2¢ 2 5)

§:1+ 2m lo%e)
20¢2 A1) _ oa(1) o qR;
+9° (€ apse — Eps (éq)e)>L=1_ = /O ]é P d¢dz, (3.14)

where the bar through the integral represents the finite part, i.e. excluding critical-
layer effects. Note that the modified Rayleigh pressure equation (2.6a), (3.12a) is a
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partial differential equation, and, thus, so is the adjoint equation (3.13a); hence, the
need to integrate over both & and Z above.
Near the critical level, ¢ is of the form

¢=qo +qu(§ = 1) + qu2(§ = 1)* + 0(€ = 1)*In(€ — 1) + qua(€ —1)° +---,
while RQ”,RQ’ have the forms
Ry =r8E -1 4 1P - D+ -7+, k=01,

(the expressions for the coefficients are simply obtained by expanding (3.9d) and
(3.9¢) near the critical layer, however they are somewhat long and for the sake of
brevity are not given here) while ﬁél) has the form

. (1
P5) = aséy + by s + Pypr-
Here the first two terms correspond to solutions of the homogeneous equation, aq, boy
are functions of Z and subscript PI denotes particular integral. The jump ba; — by
will be determined in the subsequent analysis, but it is not necessary to determine
ay. In fact, we define ag, byt so that ﬁégl has no terms in (£ —1)°, (£ —1)3, i.e. ﬁggl
is properly defined. Then, near the critical layer, ﬁglp)l has the form

P = Bi(€ — 1)+ Ba(€ — 1) + Ban(6 — 1P In(€ — 1) 106 — 1P +---,

where

noA | ooy
Ba1, = “S'L@—X+ﬁ§L (& +m2X)A,
and
1 1
é’ﬁ) = ﬁ(fhzr(_kl) + Q117"(()k) + (Ilorgk)) - F(Qn’f'(_kl))\z + (1107'(()k)>\2)
(k) 2
qor_y [3X5  2)3
el IR k=0,1.
o (2)\2 3\ )’ ’
Thus, the solvability condition becomes
27 27 s}
3Aq10 / ][ qRs
————(byy —by_)dZ = — dédZz. 3.15
o [N (b2t = bz-) o Jo (@—c)? : ( )

Near the critical layer, the Prandtl-transformed normal velocity has the form

(1 (1 (1
oy = 05" — fdy,

=a_(E-1)" 4w+ mL(€ — 1) In(é - 1)

Fme( =1+, (£>1), (3.16a)
where
3A 34
L = ‘E‘)\‘ﬁBL and T4 — Mo = —E—)—\(bu —by). (3.16b)

Note that for & < 1, the logarithm In(§ — 1) in (3.16a) must be replaced by
In |€ — 1| —imr; the negative sign in front of im follows from an inspection of the Stokes
lines of the operator that occurs in the governing equations for the linear problem
in the critical layer.
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Thus, the quantity bsy, — by can be expressed in terms of the jump that @élp)g

suffers across the critical layer:

boy — by =

. Y
iaA [A“) } — infay.. (3.17)

T3A |Vere
The second term on the right-hand side corresponds to the linear part of the jump

(1) o i o . i
that 0yp, suffers across the critical layer; the first term on the right-hand side corre
sponds to the nonlinear jump which is calculated in the following two sections. Once

the nonlinear jump is determined, equation (3.17) will give the evolution equation
for A(X).

1—

4. The critical layer

Let us now consider the critical-layer flow (corresponding to region III in figure 3)
with our aim to calculate expressions for the jumps in the solvability condition ob-
tained in the previous subsection; we shall find that another region, the so-called
diffusion layer, also needs to be considered and this is the subject of the next sub-
section. The analysis has similarities to that given in Appendix B of Hall & Smith
(1991), Appendix A of Brown et al. (1993); and Wu (1993). Therefore, only the
essential details of the analysis will be given here.

The critical layer is centred on Y = Y. = f(z,Z) and has thickness O(Re™"/%)
relative to the boundary-layer thickness; it is a viscous critical layer. We introduce
the critical-layer normal variable n ~ O(1), where

Re'?y =Y = f(Z)+ Re ™/, (4.1a)
so that now
8 a 1/6 N a
e e o 4.1b
oz "oz 1 gy (4.19)
and the transformed normal velocity vp is defined by
vp =v— frw. (4.1¢)

The underlying three-dimensional flow has the form
i =c+ Re VOSNZ)n+ Re VP M\ (Z)0?)2 + -+ - + piigo(2)
+puRe 0 u (Z)n+ p Re P (Z)n/2+ - (4.2)
Since we are looking at a viscous critical layer (the flow is marginally unstable), we

must assume that

1< Re” V6

However, depending on the size of i, the above expansion (4.2) will be disordered.
In the critical layer, the perturbation to the three-dimensional underlying base
flow has the following form:

(u,vp,w,p) = e[(Rel/6 Uy, Ver, Re*5 W, PI)E +ce]+---
+€2(R€1/2 U(), R61/3 Vpo, R€1/2 WQ, R61/3 ﬁ)())EO + e (43)

Here only the terms of direct interest have been shown; the second harmonic does not
contribute to the nonlinear jump and therefore has not been included above. Recall
that the small parameter € is a measure of the size of the linear inviscid secondary
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Nonlinear evolution of inviscid secondary instabilities 495

instability (see (2.5)); in §5 we give a relationship between the small parameters €, u
and the Reynolds number Re >> 1, necessary for the nonlinear term in the amplitude
evolution equation for A(X) to be ‘competitive’.

(a) The fundamental
Writing
U, =0+ Re V0P 1. (4.4)
with similar expansions for Ve, Wy and ]51, and substituting into the governing

(Prandtl-transformed) equations leads to the following system for the leading-order
fundamental:

0 4 VUL W o, Y o,
ia)\nUg_l) + AVSf + )\angl) = —iapg_l) +AUY

Inn>
oW = —PO) 4 £, P2+ AW

(4.5a)

which must be solved subject to the condition that solutions match to their outer
counterparts as 77 — £00. The y-momentum equation of the next order problem (for
U§2), etc.) yields, in particular,

PP = 1,P)) A, (4.5b)

1n

enabling a solution of (4.5a) to be determined. The solutions which match with the
outer flow can be found in the paper by Brown et al. (1993); in our notation they
are

P = A(X)¢10(2),

————/ exp[—ia'/®nt — 3 /3] dt,
0

i) .
po) _ 1OWL T 1 Az az) O s
Ul_a 0z 4a()\+a 67](W1)’
and
. Nz az\ g 1 No o faf
a _ _ (Arz a4z W, _ Az Jzlzz
Vir = <)\+a) e 2mm<x A ) (4.6)
where
a = \a/A. (4.7)

At this stage we also point out that A, a, a, A are all real.

It is also possible to consider further terms in the fundamental; in fact, by con-
sidering the terms due to the non-neutrality, it is possible to derive the logarithmic
jump effect deduced earlier from the asymptotic form of the outer solution as the
critical layer is approached. As a number of different orders have to be considered,
and the answers are algebraically messy, we do not present that analysis here.

(b) The zeroth harmonic

We now consider the largest zeroth harmonic, or mean-flow correction, (propor-
tional to E°) due to the nonlinear interactions of the fundamental. Writing

U() _ 0(()1) + Re_1/6 082) 4o (4.8)
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with similar expansions for VPO,WO and ]50, and substituting into the governing
(Prandtl-transformed) equations leads to the following system for the leading-order
zeroth harmonic
(1 21 (1 - (1 (1 5(1
Vi, + Wiy =0, AUG) —AVE) = AgnWi) = S P =0 (490)
5 (2 (1) 13,(1)% £ (1 B A ) :
[2PS) — AP — 21, WIWT =0, AW + f2P5) — PY) = Ss,

Onn

where, in particular,
S — 0B WO L PR O e (1.90)

As usual in such studies, we choose ]581) = 0 (any non-zero choice would just
correspond to a different mean flow). Thus,

AW, = 5, + 2T 22 Dy (4.10a)

from which it follows that

W — [£F, +Cln, VS — —[£F, + )1 /2, (4.100)
and

A 1

(1) 2 4

Uy’ — SAAN (M[£F, +C)) 0", as  n— oo, (4.10¢)

where
. Say TAy m(2/3)23T(1/3) ., 5
2 2 2

F,(X,Z) = ((]¢10| )z — (~37 + 5 ) |b10] ) 575 A [A(X)]?, (4.10d)

and it is important at this stage to note that the X and Z-dependences of F,, are
separable. Here, C' is a function of X, Z and does not need to be determined in this
analysis.

These asymptotes imply that the zeroth harmonic grows on leaving the critical
layer and that it is necessary to consider another flow region (the diffusion layer)
where diffusion effects can counteract this growth. In general, such diffusion layers
need to be considered in all nonlinear analyses dealing with viscous critical layers
(see, for example, Brown & Stewartson 1978; Wu 1993; cf. the buffer layer of weakly
nonlinear vortex-wave theories).

5. The diffusion layer and the evolution equation

This layer (regions Ila,b in figure 3) is introduced to take care of the growing
mean-flow corrections as the critical layer is left; it turns out that the nonlinear term
in the desired evolution equation for A stems entirely from this region. It is necessary
to introduce the new scaled normal coordinate

i =Y — f(Z))/(8AY2c7?), 8 = Re™V/* 71?2 <« 1, (5.1a)
and so here the mean flow has the form
a=c+ (A)) 2607+ - (5.1b)

The perturbation of this mean flow has the form
(u,vp, w,p) = €[(65 Uy, Vo1, 65 ‘W1, P)E + c.cl+ .-
+€2(63R67/6U(), (S%RCQ/BVPQ, (SQRBQ/:SVT/(), 6;1p0)E() +--. (52)
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Nonlinear evolution of inviscid secondary instabilities 497
The fundamental has the expansion
U =0 4 4602 4. 6y =283 Re™/®, (5.3)

with similar series for Vpo, WO and Pp. Note that the largest fundamental in this
region is merely a continuation of the outer solution in the locality of the critical
layer:

(O, Vi W PIYY = (M2 A7 2dy 507 dy, —iae 2 ATV2dyi 10) A(X).

(5.4)
(a) The leading zeroth harmonic
Writing
(00, VPO, Wo) = (Uél), Véé),Wél)) + -
we find that the governing equations for the leading zeroth harmonic are
ATVRARYED L W) =0, (5.50)
0 N\~ Aoy, AV g
<a—5< B %‘) 05" + Vo) + =i =0, (5.50)
and
0 0* \ (1)
(o - 32 W6 (5.50)

It follows, from matching with the critical-layer solutions, that the boundary con-
ditions at n = 40 are
840(1) 1 82‘7(1) 8W(1)
——— = —(XFL)z, = —Fig, -
on Ac on on
where F. = A(+£F, +C)/c. These equations can be solved using a Fourier-transform
method to give

— A2e 2,

1) _ vys [ 172 ~2
77 = £(1/2cm / )77/0 t™ /% exp(—n°/4t)

XA[Fe(X — )]z + 22t Mg Fu (X —t) = 3A,FL (X —t))dt,  (5.6a)

7 (
0

Vi = £n1/2 / V2[R (X — 1))z exp(—i? /4t) dt, (5.60)
0

Wi = F(e/nA)" 2 / t712Fa (X — 1) exp(—ip? /4t) dt. (5.6¢)
0

As the mean-flow correction is larger in the diffusion layer than the critical layer,
the leading-order nonlinear jump will result from the interaction of the mean flow
and the largest fundamental in this (the diffusion) layer.

(b) The largest forced fundamental

The governing equations for the largest fundamental due to non-neutrality effects
are

il + (¢/ A2V + W) =0, (5.7a)

Phil. Trans. R. Soc. Lond. A (1995)


http://rsta.royalsocietypublishing.org/

THE ROYAL
SOCIETY A

PHILOSOPHICAL
TRANSACTIONS
OF

THE ROYAL
OF SOCIETY A

PHILOSOPHICAL
TRANSACTIONS

Downloaded from rsta.royalsocietypublishing.org

498 N. D. Blackaby and P. Hall
i (A))2AGUE + AV + (A)e) Py + 10 P

= —03 U = (¢/ )PV TG — WU, (5.76)

P =0, (5.7¢)

io(Afe) AP + %P{? =MW, (5.7d)

These can be combined to give an equation for \N/FE?):
e 1 0 N Az~ ~
Vi = (c/ A)Y/2x 1A(X)a—77 [—madm ! (Ugg - TZUSD) +d2U(§,1~,)] . (5.7e)

Substituting for Uél) from equation (5.6) gives the required nonlinear jump
- A(X) iad A o Fu(X —¢, 2)
(2) 100 __ 1 Z 2 )
Mme—xE%m(@‘7T<@‘7>A>L A<**7f—‘ dc.
z

(¢) The evolution equation

Noting that F,, is separable in X and Z, we introduce F,,,(Z) such that
Fo(X,Z) = Fuu(Z)|A(X)]?. (5.9a)

Equation (5.8) may then be written in the form

~ 1 iad A
(2) oo _ 1 Z
[VPlﬁ]—oo T NA2A/2 (dz A (82 - T) A) 22

« (F w“;(Z >>Z A(X) /O T AR — O dc. (5.95)

The final evolution equation is obtained from (3.15), (3.17) and (5.9b). If the
constants 1,7y, are defined by

o oo (0) : (0)

"= / ][ 1 ge  SimnodBy | g,
0 o (@—c)? A2 f?

2 00 (1) . (1) -1
qR; 3imgio ALy
de — dz 1
XUO {fo (u — c)? ¢ A2 f? ’ (5.10a)
T agq ioudy Az o [ Fuu(Z)
”2‘14 {an3<%" A <6Z_’X>‘A>A < X >Z}dz

27 00 (1) . (1 1
qR 3imq10A Py
) [/0 {]{) (u —2(:)2 d - )jgfz o } dZ] ) (5.100)

then the required evolution equation is
dA

—= +71(20)(Z +m2X)A
5 T n@)@+mTX)

:mmmmﬁlwm@—omm A0, asX oo (311)
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Nonlinear evolution of inviscid secondary instabilities 499

Here, the parameter

o =€ Re?? /2 (5.12)
measures the ‘competitiveness’ of the nonlinear term in the evolution equation, rel-
ative to the term corresponding to linear effects. For ¢ <« 1, linear effects will dom-
inate the evolution and the disturbance will continue to grow after x = xy. Here
we concern ourselves with the regime o ~ O(1), where linear and nonlinear effects
have equal influence on the evolution of the disturbance. Recall that the parameter
m = p Re** is a measure of the relative effect of the non-parallelism of the under-
lying three-dimensional flow on the evolution of the disturbance. Note that when
1~ O(Re™"*) the linear term in (5.11) is proportional to X A; however, for larger
values of u the linear term is, instead, proportional to A.

Thus, we see that the Z-dependence of the problem has been removed by the
application of the solvability condition so that the Z-dependence of the nonlinear
problem is non-local, as was found to be the case in the linear regime. Further, we see
that our weakly nonlinear analysis has lead to a cubic nonlinearity; however, rather
than appearing as a polynomial (e.g., as A|A|? if the evolution was described by the
Stuart—Watson method), the nonlinear term is a convolution. The evolution equation
is an integro-differential equation which depends on the entire history of the distur-
bance. Such evolution equations were first derived/proposed by Hickernell (1984). In
fact Wu (1993) and Smith et al. (1993) have derived essentially the same equation
in their studies of boundary-layer transition; however, as we have considered a fully
three-dimensional boundary layer, our coefficients 7,7, are far more complicated.
Similar equations have also appeared in other recent papers (se, for example, Smith
& Walton 1989; Smith & Blennerhassett 1992; Wu et al. 1993; Blackaby 1994).

6. Solution of the evolution equation and conclusions

The nature of the solution of (5.11) depends crucially on the sign of the real
part of v, (defined by equation (5.10b)) and on the size of u. Since the disturbance
under investigation becomes unstable as it moves downstream, we know that the real
part of +; is negative. Without calculating the solution of the neutral leading-order
eigenfunction and adjoint problems, we cannot say what is the sign of the real part
of v5. We shall therefore discuss both possibilities and use results from experiments
to suggest the most likely scenario; we consider the two cases m ~ O(1) and m > 1
separately.

(a) The evolution equation for m > 1

When m > 1, the (still small) parameter p is sufficiently large that the non-
parallelism of the underlying flow does not enter the evolution equation. In this case
a suitably rescaled version of (5.11) takes the form

dB Y -
- E)?:BiB(X) B(X -(¢)d¢, B—0, asX — —oo. (6.1)
0
Here B is real, positive and proportional to |A|? and the + signs correspond, respec-
tively, to the cases when the real part of 7, is positive and negative, respectively.
The solution of (6.1), which has the required upstream behaviour, is given by

B =2e5/(1Fe¥X)2 (6.2)
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If we take the negative sign in (6.2), corresponding to the positive sign in equation
(6.1), we see that a singularity develops after a finite distance. If the positive sign
is taken in (6.2), B grows as X increases from —oo until it reaches a maximum and
then decays exponentially to zero. At first sight this seems a rather curious fate for
a disturbance which was initially unstable on the basis of linear theory. However,
the integral term in (6.1) can be interpreted as the effect on the growth rate by the
mean flow corrected by the upstream development of the instability. Thus, the mean-
flow modification, which occurs in the early stages of the growth of the disturbance,
adjusts the mean flow so that it is linearly stable further downstream.

(b) The evolution equation for m ~ O(1)

When m ~ O(1), the small size of ;» means that the non-parallelism of the under-
lying flow does enter the evolution equation. In this case a suitably rescaled version
of (5.11) takes a form different from (6.1):

dB - N S

% xB+ B(X)/ B(X — ) dc. (6.3)

dX 0
This must be solved subject to an upstream initial condition. Again, B is real, positive
and proportional to |A|* and the + signs correspond, respectively, to the cases when
the real part of v, is positive and negative, respectively.

It is not possible to solve equation (6.3) analytically; however, it is possible to
consider the possible large-X forms of the solutions analytically. We find that two
possible large-X behaviours are possible: one in which B decays to zero, and another
in which B grows as X increases until a singularity develops after a finite distance.
The latter large-X possibility can only occur for the positive sign in equation (6.3).
A numerical solution of equation (6.3) confirms these findings and also suggests that
solutions for the case corresponding to the positive sign in equation (6.3) will always
develop a singularity after a finite distance.

7. Conclusions

Experimental observations certainly suggest that the mode identified by Hall &
Horseman (1991) continues to grow after it first becomes unstable. Here, we are
assuming that the mode of instability discussed by Hall & Horseman (1991) is re-
sponsible for the experimentally observed onset of three-dimensionality in the Gortler
problem. The closeness of the theoretically predicted most-unstable wavenumber and
frequency with those measured by Swearingen & Blackwelder (1987) gives some back-
ing for that assumption. The experiments therefore suggest that the negative sign
is appropriate in (6.1), (6.3). However, without numerical solutions of the neutral
eigenfunction and its adjoint, we cannot confirm that assertion.

We have carried out a viscous critical-layer analysis for a marginally unstable
inviscid disturbance to a flow containing a streamwise vortex structure. The vortex
structure could be the result of a centrifugal instability, wave interactions or other
mechanisms. In fact, our analysis is valid for any flow where one of the velocity
components depends on two spatial variables and is larger than the the other two
components. For such more general flows, the periodicity in the spanwise direction,
which we assume in this paper, must be replaced by an appropriate condition in
order to derive the required solvability condition.

Our analysis is similar to that of Wu (1993) and Smith et al. Brown (1993); how-
ever, our analysis is complicated due to the fact that the nonlinear vortex state
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has rendered the boundary-layer flow three dimensional. As a consequence, our dis-
turbances have a general Z-dependence, whereas Wu (1993) was able to consider
separate harmonics in Z and derive coupled amplitude equations. In the problem
considered by Smith et al. (1993), the initial boundary-layer flow is two dimensional;
all subsequent vortex activity (three dimensionality of the boundary layer) is due to
the relatively large mean-flow corrections induced in the diffusion (buffer) layers via
nonlinear-interaction effects.

In this paper we have described the evolution of the inviscid modes found by
Hall & Horseman (1991); this has achieved using viscous-critical-layer and diffusion-
layer theories in the context of a weakly nonlinear instability theory. In particular,
we have considered the evolution of a mode near the critical streamwise location,
where the vortex structure has developed sufficiently to (first) render the now three-
dimensional boundary-layer flow unstable to inviscid modes. At such a location, the
flow is marginally unstable and we can consider the evolution of the most dangerous
(important) mode. We note that our theory is not directly applicable to modes
excited at streamwise locations where the flow supports a band of unstable modes
(i.e. at an O(1) distance downstream from the critical z-location); in such cases the
most dangerous mode has too large a growth rate and the wavenumber will not
be close enough to a ‘neutral’ value for weakly-nonlinear theory to be immediately
applicable. However, it can be argued that viscous spreading effects (or some other
external effect) will reduce the growth rates to a size where a weakly nonlinear theory
(based on unsteady critical-layer theory rather than viscous critical-layer theory) is
appropriate. The papers by, for example, Michalke (1964), Crighton & Gaster (1976)
and Hultgren (1992) support such an argument, which has been used in many recent
papers concerned with flow stability (see, for example, Goldstein & Leib 1988, 1989;
Goldstein & Hultgren 1988; Hultgren 1992; Wu et al. 1993). The evolution of the
Hall-Horseman modes for the non-marginal stability case is the subject of current
study by the authors and will be reported in due course.

Our analysis shows that the disturbance amplitude satisfies the integro-differential
equation (5.11/6.1). Experimental observations show that the linear growth of three-
dimensional disturbances to Gortler vortices is rapidly followed by the onset of tur-
bulence. Such a scenario would be consistent with (6.1) if the positive sign were taken
in that equation. The excellent agreement between the experimental measurements
of Swearingen & Blackwelder (1987) and Hall & Horseman (1991) for the linear
regime lead us to believe that this is indeed the case. However, it is possible that the
sign to be taken in (6.1) and (6.2) depends on the wavenumber and frequency of the
marginally unstable mode and that some disturbances are destroyed by viscous ef-
fects. Therefore, it is conceivable that the linearly growing disturbances are inhibited
by viscosity for weak vortex states and grow explosively further downstream when
the vortex state has been reinforced.

Following the explosive growth of the disturbance, new effects must come into play
and viscosity will play a secondary role; see Wu et al. (1993), who were concerned
with the growth of inviscid disturbances to Stokes layers. The extension of our work
along the line followed by the latter, and indeed other authors, is made non-trivial
by the fact that in our calculation the critical layer is not flat.

Thanks are due to ICASE, where part of this work was carried out. The authors also thank the
referees of this paper for their useful comments.
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